11 Appendix

11.1 Definitions and statistical results

Definition 11.1 (Covariance stationarity) The process \(y_t\) is covariance stationary —or weakly stationary— if, for all \(t\) and \(j\), \[ \mathbb{E}(y_t) = \mu \quad \mbox{and} \quad \mathbb{E}\{(y_t - \mu)(y_{t-j} - \mu)\} = \gamma_j. \]

Definition 11.2 (Likelihood Ratio test statistics) The likelihood ratio associated to a restriction of the form \(H_0: h({\boldsymbol\theta})=0\) (where \(h({\boldsymbol\theta})\) is a \(r\)-dimensional vector) is given by: \[ LR = \frac{\mathcal{L}_R(\boldsymbol\theta;\mathbf{y})}{\mathcal{L}_U(\boldsymbol\theta;\mathbf{y})} \quad (\in [0,1]), \] where \(\mathcal{L}_R\) (respectively \(\mathcal{L}_U\)) is the likelihood function that imposes (resp. that does not impose) the restriction. The likelihood ratio test statistic is given by \(-2\log(LR)\), that is: \[ \boxed{\xi^{LR}= 2 (\log\mathcal{L}_U(\boldsymbol\theta;\mathbf{y})-\log\mathcal{L}_R(\boldsymbol\theta;\mathbf{y})).} \] Under regularity assumptions and under the null hypothesis, the test statistic follows a chi-square distribution with \(r\) degrees of freedom (see Table 11.3).

Proposition 11.1 (p.d.f. of a multivariate Gaussian variable) If \(Y \sim \mathcal{N}(\mu,\Omega)\) and if \(Y\) is a \(n\)-dimensional vector, then the density function of \(Y\) is: \[ \frac{1}{(2 \pi)^{n/2}|\Omega|^{1/2}}\exp\left[-\frac{1}{2}\left(Y-\mu\right)'\Omega^{-1}\left(Y-\mu\right)\right]. \]

11.2 Proofs

Proof of Proposition 1.2

Proof. Using Proposition 11.1, we obtain that, conditionally on \(x_1\), the log-likelihood is given by \[\begin{eqnarray*} \log\mathcal{L}(Y_{T};\theta) & = & -(Tn/2)\log(2\pi)+(T/2)\log\left|\Omega^{-1}\right|\\ & & -\frac{1}{2}\sum_{t=1}^{T}\left[\left(y_{t}-\Pi'x_{t}\right)'\Omega^{-1}\left(y_{t}-\Pi'x_{t}\right)\right]. \end{eqnarray*}\] Let’s rewrite the last term of the log-likelihood: \[\begin{eqnarray*} \sum_{t=1}^{T}\left[\left(y_{t}-\Pi'x_{t}\right)'\Omega^{-1}\left(y_{t}-\Pi'x_{t}\right)\right] & =\\ \sum_{t=1}^{T}\left[\left(y_{t}-\hat{\Pi}'x_{t}+\hat{\Pi}'x_{t}-\Pi'x_{t}\right)'\Omega^{-1}\left(y_{t}-\hat{\Pi}'x_{t}+\hat{\Pi}'x_{t}-\Pi'x_{t}\right)\right] & =\\ \sum_{t=1}^{T}\left[\left(\hat{\varepsilon}_{t}+(\hat{\Pi}-\Pi)'x_{t}\right)'\Omega^{-1}\left(\hat{\varepsilon}_{t}+(\hat{\Pi}-\Pi)'x_{t}\right)\right], \end{eqnarray*}\] where the \(j^{th}\) element of the \((n\times1)\) vector \(\hat{\varepsilon}_{t}\) is the sample residual, for observation \(t\), from an OLS regression of \(y_{j,t}\) on \(x_{t}\). Expanding the previous equation, we get: \[\begin{eqnarray*} &&\sum_{t=1}^{T}\left[\left(y_{t}-\Pi'x_{t}\right)'\Omega^{-1}\left(y_{t}-\Pi'x_{t}\right)\right] = \sum_{t=1}^{T}\hat{\varepsilon}_{t}'\Omega^{-1}\hat{\varepsilon}_{t}\\ &&+2\sum_{t=1}^{T}\hat{\varepsilon}_{t}'\Omega^{-1}(\hat{\Pi}-\Pi)'x_{t}+\sum_{t=1}^{T}x'_{t}(\hat{\Pi}-\Pi)\Omega^{-1}(\hat{\Pi}-\Pi)'x_{t}. \end{eqnarray*}\] Let’s apply the trace operator on the second term (that is a scalar): \[\begin{eqnarray*} \sum_{t=1}^{T}\hat{\varepsilon}_{t}'\Omega^{-1}(\hat{\Pi}-\Pi)'x_{t} & = & Tr\left(\sum_{t=1}^{T}\hat{\varepsilon}_{t}'\Omega^{-1}(\hat{\Pi}-\Pi)'x_{t}\right)\\ = Tr\left(\sum_{t=1}^{T}\Omega^{-1}(\hat{\Pi}-\Pi)'x_{t}\hat{\varepsilon}_{t}'\right) & = & Tr\left(\Omega^{-1}(\hat{\Pi}-\Pi)'\sum_{t=1}^{T}x_{t}\hat{\varepsilon}_{t}'\right). \end{eqnarray*}\] Given that, by construction (property of OLS estimates), the sample residuals are orthogonal to the explanatory variables, this term is zero. Introducing \(\tilde{x}_{t}=(\hat{\Pi}-\Pi)'x_{t}\), we have \[\begin{eqnarray*} \sum_{t=1}^{T}\left[\left(y_{t}-\Pi'x_{t}\right)'\Omega^{-1}\left(y_{t}-\Pi'x_{t}\right)\right] =\sum_{t=1}^{T}\hat{\varepsilon}_{t}'\Omega^{-1}\hat{\varepsilon}_{t}+\sum_{t=1}^{T}\tilde{x}'_{t}\Omega^{-1}\tilde{x}_{t}. \end{eqnarray*}\] Since \(\Omega\) is a positive definite matrix, \(\Omega^{-1}\) is as well. Consequently, the smallest value that the last term can take is obtained for \(\tilde{x}_{t}=0\), i.e. when \(\Pi=\hat{\Pi}.\)

The MLE of \(\Omega\) is the matrix \(\hat{\Omega}\) that maximizes \(\Omega\overset{\ell}{\rightarrow}L(Y_{T};\hat{\Pi},\Omega)\). We have: \[\begin{eqnarray*} \log\mathcal{L}(Y_{T};\hat{\Pi},\Omega) & = & -(Tn/2)\log(2\pi)+(T/2)\log\left|\Omega^{-1}\right| -\frac{1}{2}\sum_{t=1}^{T}\left[\hat{\varepsilon}_{t}'\Omega^{-1}\hat{\varepsilon}_{t}\right]. \end{eqnarray*}\]

Matrix \(\hat{\Omega}\) is a symmetric positive definite. It is easily checked that the (unrestricted) matrix that maximizes the latter expression is symmetric positive definite matrix. Indeed: \[ \frac{\partial \log\mathcal{L}(Y_{T};\hat{\Pi},\Omega)}{\partial\Omega}=\frac{T}{2}\Omega'-\frac{1}{2}\sum_{t=1}^{T}\hat{\varepsilon}_{t}\hat{\varepsilon}'_{t}\Rightarrow\hat{\Omega}'=\frac{1}{T}\sum_{t=1}^{T}\hat{\varepsilon}_{t}\hat{\varepsilon}'_{t}, \] which leads to the result.

Proof of Proposition 1.3

Proof. Let us drop the \(i\) subscript. Rearranging Eq. (1.12), we have: \[ \sqrt{T}(\mathbf{b}-\boldsymbol{\beta}) = (X'X/T)^{-1}\sqrt{T}(X'\boldsymbol\varepsilon/T). \] Let us consider the autocovariances of \(\mathbf{v}_t = x_t \varepsilon_t\), denoted by \(\gamma^v_j\). Using the fact that \(x_t\) is a linear combination of past \(\varepsilon_t\)s and that \(\varepsilon_t\) is a white noise, we get that \(\mathbb{E}(\varepsilon_t x_t)=0\). Therefore \[ \gamma^v_j = \mathbb{E}(\varepsilon_t\varepsilon_{t-j}x_tx_{t-j}'). \] If \(j>0\), we have \(\mathbb{E}(\varepsilon_t\varepsilon_{t-j}x_tx_{t-j}')=\mathbb{E}(\mathbb{E}[\varepsilon_t\varepsilon_{t-j}x_tx_{t-j}'|\varepsilon_{t-j},x_t,x_{t-j}])=\) \(\mathbb{E}(\varepsilon_{t-j}x_tx_{t-j}'\mathbb{E}[\varepsilon_t|\varepsilon_{t-j},x_t,x_{t-j}])=0\). Note that we have \(\mathbb{E}[\varepsilon_t|\varepsilon_{t-j},x_t,x_{t-j}]=0\) because \(\{\varepsilon_t\}\) is an i.i.d. white noise sequence. If \(j=0\), we have: \[ \gamma^v_0 = \mathbb{E}(\varepsilon_t^2x_tx_{t}')= \mathbb{E}(\varepsilon_t^2) \mathbb{E}(x_tx_{t}')=\sigma^2\mathbf{Q}. \] The convergence in distribution of \(\sqrt{T}(X'\boldsymbol\varepsilon/T)=\sqrt{T}\frac{1}{T}\sum_{t=1}^Tv_t\) results from the Central Limit Theorem for covariance-stationary processes, using the \(\gamma_j^v\) computed above.

11.3 Statistical Tables

Table 11.1: Quantiles of the \(\mathcal{N}(0,1)\) distribution. If \(a\) and \(b\) are respectively the row and column number; then the corresponding cell gives \(\mathbb{P}(0<X\le a+b)\), where \(X \sim \mathcal{N}(0,1)\).
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.6179 0.7257 0.8159 0.8849 0.9332 0.9641 0.9821 0.9918 0.9965
0.1 0.5040 0.6217 0.7291 0.8186 0.8869 0.9345 0.9649 0.9826 0.9920 0.9966
0.2 0.5080 0.6255 0.7324 0.8212 0.8888 0.9357 0.9656 0.9830 0.9922 0.9967
0.3 0.5120 0.6293 0.7357 0.8238 0.8907 0.9370 0.9664 0.9834 0.9925 0.9968
0.4 0.5160 0.6331 0.7389 0.8264 0.8925 0.9382 0.9671 0.9838 0.9927 0.9969
0.5 0.5199 0.6368 0.7422 0.8289 0.8944 0.9394 0.9678 0.9842 0.9929 0.9970
0.6 0.5239 0.6406 0.7454 0.8315 0.8962 0.9406 0.9686 0.9846 0.9931 0.9971
0.7 0.5279 0.6443 0.7486 0.8340 0.8980 0.9418 0.9693 0.9850 0.9932 0.9972
0.8 0.5319 0.6480 0.7517 0.8365 0.8997 0.9429 0.9699 0.9854 0.9934 0.9973
0.9 0.5359 0.6517 0.7549 0.8389 0.9015 0.9441 0.9706 0.9857 0.9936 0.9974
1 0.5398 0.6554 0.7580 0.8413 0.9032 0.9452 0.9713 0.9861 0.9938 0.9974
1.1 0.5438 0.6591 0.7611 0.8438 0.9049 0.9463 0.9719 0.9864 0.9940 0.9975
1.2 0.5478 0.6628 0.7642 0.8461 0.9066 0.9474 0.9726 0.9868 0.9941 0.9976
1.3 0.5517 0.6664 0.7673 0.8485 0.9082 0.9484 0.9732 0.9871 0.9943 0.9977
1.4 0.5557 0.6700 0.7704 0.8508 0.9099 0.9495 0.9738 0.9875 0.9945 0.9977
1.5 0.5596 0.6736 0.7734 0.8531 0.9115 0.9505 0.9744 0.9878 0.9946 0.9978
1.6 0.5636 0.6772 0.7764 0.8554 0.9131 0.9515 0.9750 0.9881 0.9948 0.9979
1.7 0.5675 0.6808 0.7794 0.8577 0.9147 0.9525 0.9756 0.9884 0.9949 0.9979
1.8 0.5714 0.6844 0.7823 0.8599 0.9162 0.9535 0.9761 0.9887 0.9951 0.9980
1.9 0.5753 0.6879 0.7852 0.8621 0.9177 0.9545 0.9767 0.9890 0.9952 0.9981
2 0.5793 0.6915 0.7881 0.8643 0.9192 0.9554 0.9772 0.9893 0.9953 0.9981
2.1 0.5832 0.6950 0.7910 0.8665 0.9207 0.9564 0.9778 0.9896 0.9955 0.9982
2.2 0.5871 0.6985 0.7939 0.8686 0.9222 0.9573 0.9783 0.9898 0.9956 0.9982
2.3 0.5910 0.7019 0.7967 0.8708 0.9236 0.9582 0.9788 0.9901 0.9957 0.9983
2.4 0.5948 0.7054 0.7995 0.8729 0.9251 0.9591 0.9793 0.9904 0.9959 0.9984
2.5 0.5987 0.7088 0.8023 0.8749 0.9265 0.9599 0.9798 0.9906 0.9960 0.9984
2.6 0.6026 0.7123 0.8051 0.8770 0.9279 0.9608 0.9803 0.9909 0.9961 0.9985
2.7 0.6064 0.7157 0.8078 0.8790 0.9292 0.9616 0.9808 0.9911 0.9962 0.9985
2.8 0.6103 0.7190 0.8106 0.8810 0.9306 0.9625 0.9812 0.9913 0.9963 0.9986
2.9 0.6141 0.7224 0.8133 0.8830 0.9319 0.9633 0.9817 0.9916 0.9964 0.9986
Table 11.2: Quantiles of the Student-\(t\) distribution. The rows correspond to different degrees of freedom (\(\nu\), say); the columns correspond to different probabilities (\(z\), say). The cell gives \(q\) that is s.t. \(\mathbb{P}(-q<X<q)=z\), with \(X \sim t(\nu)\).
0.05 0.1 0.75 0.9 0.95 0.975 0.99 0.999
1 0.079 0.158 2.414 6.314 12.706 25.452 63.657 636.619
2 0.071 0.142 1.604 2.920 4.303 6.205 9.925 31.599
3 0.068 0.137 1.423 2.353 3.182 4.177 5.841 12.924
4 0.067 0.134 1.344 2.132 2.776 3.495 4.604 8.610
5 0.066 0.132 1.301 2.015 2.571 3.163 4.032 6.869
6 0.065 0.131 1.273 1.943 2.447 2.969 3.707 5.959
7 0.065 0.130 1.254 1.895 2.365 2.841 3.499 5.408
8 0.065 0.130 1.240 1.860 2.306 2.752 3.355 5.041
9 0.064 0.129 1.230 1.833 2.262 2.685 3.250 4.781
10 0.064 0.129 1.221 1.812 2.228 2.634 3.169 4.587
20 0.063 0.127 1.185 1.725 2.086 2.423 2.845 3.850
30 0.063 0.127 1.173 1.697 2.042 2.360 2.750 3.646
40 0.063 0.126 1.167 1.684 2.021 2.329 2.704 3.551
50 0.063 0.126 1.164 1.676 2.009 2.311 2.678 3.496
60 0.063 0.126 1.162 1.671 2.000 2.299 2.660 3.460
70 0.063 0.126 1.160 1.667 1.994 2.291 2.648 3.435
80 0.063 0.126 1.159 1.664 1.990 2.284 2.639 3.416
90 0.063 0.126 1.158 1.662 1.987 2.280 2.632 3.402
100 0.063 0.126 1.157 1.660 1.984 2.276 2.626 3.390
200 0.063 0.126 1.154 1.653 1.972 2.258 2.601 3.340
500 0.063 0.126 1.152 1.648 1.965 2.248 2.586 3.310
Table 11.3: Quantiles of the \(\chi^2\) distribution. The rows correspond to different degrees of freedom; the columns correspond to different probabilities.
0.05 0.1 0.75 0.9 0.95 0.975 0.99 0.999
1 0.004 0.016 1.323 2.706 3.841 5.024 6.635 10.828
2 0.103 0.211 2.773 4.605 5.991 7.378 9.210 13.816
3 0.352 0.584 4.108 6.251 7.815 9.348 11.345 16.266
4 0.711 1.064 5.385 7.779 9.488 11.143 13.277 18.467
5 1.145 1.610 6.626 9.236 11.070 12.833 15.086 20.515
6 1.635 2.204 7.841 10.645 12.592 14.449 16.812 22.458
7 2.167 2.833 9.037 12.017 14.067 16.013 18.475 24.322
8 2.733 3.490 10.219 13.362 15.507 17.535 20.090 26.124
9 3.325 4.168 11.389 14.684 16.919 19.023 21.666 27.877
10 3.940 4.865 12.549 15.987 18.307 20.483 23.209 29.588
20 10.851 12.443 23.828 28.412 31.410 34.170 37.566 45.315
30 18.493 20.599 34.800 40.256 43.773 46.979 50.892 59.703
40 26.509 29.051 45.616 51.805 55.758 59.342 63.691 73.402
50 34.764 37.689 56.334 63.167 67.505 71.420 76.154 86.661
60 43.188 46.459 66.981 74.397 79.082 83.298 88.379 99.607
70 51.739 55.329 77.577 85.527 90.531 95.023 100.425 112.317
80 60.391 64.278 88.130 96.578 101.879 106.629 112.329 124.839
90 69.126 73.291 98.650 107.565 113.145 118.136 124.116 137.208
100 77.929 82.358 109.141 118.498 124.342 129.561 135.807 149.449
200 168.279 174.835 213.102 226.021 233.994 241.058 249.445 267.541
500 449.147 459.926 520.950 540.930 553.127 563.852 576.493 603.446
Table 11.4: Quantiles of the \(\mathcal{F}\) distribution. The columns and rows correspond to different degrees of freedom (resp. \(n_1\) and \(n_2\)). The different panels correspond to different probabilities (\(\alpha\)) The corresponding cell gives \(z\) that is s.t. \(\mathbb{P}(X \le z)=\alpha\), with \(X \sim \mathcal{F}(n_1,n_2)\).
1 2 3 4 5 6 7 8 9 10
alpha = 0.9
5 4.060 3.780 3.619 3.520 3.453 3.405 3.368 3.339 3.316 3.297
10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323
15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086 2.059
20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965 1.937
50 2.809 2.412 2.197 2.061 1.966 1.895 1.840 1.796 1.760 1.729
100 2.756 2.356 2.139 2.002 1.906 1.834 1.778 1.732 1.695 1.663
500 2.716 2.313 2.095 1.956 1.859 1.786 1.729 1.683 1.644 1.612
alpha = 0.95
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735
10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348
50 4.034 3.183 2.790 2.557 2.400 2.286 2.199 2.130 2.073 2.026
100 3.936 3.087 2.696 2.463 2.305 2.191 2.103 2.032 1.975 1.927
500 3.860 3.014 2.623 2.390 2.232 2.117 2.028 1.957 1.899 1.850
alpha = 0.99
5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051
10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849
15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805
20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368
50 7.171 5.057 4.199 3.720 3.408 3.186 3.020 2.890 2.785 2.698
100 6.895 4.824 3.984 3.513 3.206 2.988 2.823 2.694 2.590 2.503
500 6.686 4.648 3.821 3.357 3.054 2.838 2.675 2.547 2.443 2.356